Módulo de corte - Shear modulus

Módulo de corte
Símbolos comunes
G , S
Unidad SI pascal
Derivaciones de
otras cantidades
G = τ / γ G = E / 2 (1+ n )
Deformación cortante

En la ciencia de los materiales , el módulo de corte o módulo de rigidez , denotado por G , o algunas veces S o μ , es una medida de la rigidez elástica de un material y se define como la relación entre el esfuerzo cortante y la deformación cortante :

dónde

= esfuerzo cortante
es la fuerza que actúa
es el área sobre la que actúa la fuerza
= deformación cortante. En ingeniería , en otros lugares
es el desplazamiento transversal
es la longitud inicial del área.

La unidad SI derivada del módulo de corte es el pascal (Pa), aunque generalmente se expresa en gigapascales (GPa) o en miles de libras por pulgada cuadrada (ksi). Su forma dimensional es M 1 L -1 T -2 , en sustitución de la fuerza por los medios de los tiempos de aceleración .

Explicación

Material Valores típicos del
módulo de corte (GPa)
(a temperatura ambiente)
Diamante 478,0
Acero 79,3
Planchar 52,5
Cobre 44,7
Titanio 41,4
Vidrio 26,2
Aluminio 25,5
Polietileno 0,117
Caucho 0,0006
Granito 24
Esquisto 1,6
Caliza 24
Tiza 3.2
Arenisca 0.4
Madera 4

El módulo de corte es una de varias cantidades para medir la rigidez de los materiales. Todos ellos surgen en la ley de Hooke generalizada :

  • El módulo E de Young describe la respuesta de deformación del material a la tensión uniaxial en la dirección de esta tensión (como tirar de los extremos de un cable o poner un peso en la parte superior de una columna, con el cable alargándose y la columna perdiendo altura),
  • la relación de Poisson ν describe la respuesta en las direcciones ortogonales a esta tensión uniaxial (el alambre se vuelve más delgado y la columna más gruesa),
  • el módulo de volumen K describe la respuesta del material a la presión hidrostática (uniforme) (como la presión en el fondo del océano o una piscina profunda),
  • el módulo de cortante G describe la respuesta del material al esfuerzo cortante (como cortarlo con tijeras desafiladas).

Estos módulos no son independientes y para los materiales isotrópicos están conectados a través de las ecuaciones .

El módulo de corte se refiere a la deformación de un sólido cuando experimenta una fuerza paralela a una de sus superficies, mientras que su cara opuesta experimenta una fuerza opuesta (como la fricción). En el caso de un objeto con forma de prisma rectangular, se deformará en un paralelepípedo . Los materiales anisotrópicos como la madera , el papel y también esencialmente todos los monocristales muestran una respuesta de material diferente a la tensión o la deformación cuando se prueban en diferentes direcciones. En este caso, es posible que deba utilizar la expresión tensorial completa de las constantes elásticas, en lugar de un solo valor escalar.

Una posible definición de fluido sería un material con módulo de corte cero.

Ondas de corte

Influencias de las adiciones de componentes de vidrio seleccionados en el módulo de corte de un vidrio base específico.

En sólidos homogéneos e isotrópicos , existen dos tipos de ondas, ondas de presión y ondas de corte . La velocidad de una onda de corte está controlada por el módulo de corte,

dónde

G es el módulo de corte
es la densidad del sólido .

Módulo de corte de metales

Módulo de cizallamiento del cobre en función de la temperatura. Los datos experimentales se muestran con símbolos de colores.

Se suele observar que el módulo de cizallamiento de los metales disminuye al aumentar la temperatura. A altas presiones, el módulo de cizallamiento también parece aumentar con la presión aplicada. En muchos metales se han observado correlaciones entre la temperatura de fusión, la energía de formación de vacantes y el módulo de corte.

Existen varios modelos que intentan predecir el módulo de corte de los metales (y posiblemente el de las aleaciones). Los modelos de módulo de corte que se han utilizado en cálculos de flujo de plástico incluyen:

  1. el modelo de módulo de cizallamiento MTS desarrollado y utilizado junto con el modelo de esfuerzo de flujo plástico de tensión umbral mecánica (MTS).
  2. el modelo de módulo de cizallamiento de Steinberg-Cochran-Guinan (SCG) desarrollado y utilizado junto con el modelo de esfuerzo de flujo de Steinberg-Cochran-Guinan-Lund (SCGL).
  3. el modelo de módulo de corte de Nadal y LePoac (NP) que usa la teoría de Lindemann para determinar la dependencia de la temperatura y el modelo SCG para la dependencia de presión del módulo de corte.

Modelo MTS

El modelo de módulo de corte MTS tiene la forma:

donde está el módulo de corte en , y y son las constantes del material.

Modelo SCG

El modelo de módulo de corte de Steinberg-Cochran-Guinan (SCG) depende de la presión y tiene la forma

donde, μ 0 es el módulo de corte en el estado de referencia ( T = 300 K, p = 0, η = 1), p es la presión y T es la temperatura.

Modelo NP

El modelo de módulo de corte de Nadal-Le Poac (NP) es una versión modificada del modelo SCG. La dependencia empírica de la temperatura del módulo de corte en el modelo SCG se reemplaza con una ecuación basada en la teoría de fusión de Lindemann . El modelo de módulo de corte NP tiene la forma:

dónde

y μ 0 es el módulo de corte a cero absoluto y presión ambiental, ζ es un parámetro de material, m es la masa atómica y f es la constante de Lindemann .

Módulo de relajación de cizallamiento

El módulo de relajación de cortante es la generalización dependiente del tiempo del módulo de cortante :

.

Ver también

Referencias

Fórmulas de conversión
Los materiales elásticos lineales isotrópicos homogéneos tienen sus propiedades elásticas determinadas unívocamente por dos módulos cualesquiera entre estos; por tanto, dados dos cualesquiera, cualquier otro módulo elástico se puede calcular de acuerdo con estas fórmulas.
Notas

Hay dos soluciones válidas.
El signo más conduce a .

El signo menos conduce a .

No se puede utilizar cuando