Polisacárido - Polysaccharide

Estructura 3D de la celulosa , un polisacárido beta-glucano
La amilosa es un polímero lineal de glucosa unido principalmente a enlaces α (1 → 4). Puede estar compuesto por varios miles de unidades de glucosa. Es uno de los dos componentes del almidón , el otro es la amilopectina .

Los polisacáridos ( / ˌ p ɒ l i s æ k ə r d / ), o policarbohidratos , son los más abundantes de hidratos de carbono encontrado en los alimentos . Son carbohidratos poliméricos de cadena larga compuestos por unidades monosacáridas unidas por enlaces glicosídicos . Este carbohidrato puede reaccionar con el agua ( hidrólisis ) utilizando enzimas amilasas como catalizador, que produce azúcares constituyentes ( monosacáridos u oligosacáridos ). Su estructura varía de lineal a muy ramificada. Los ejemplos incluyen polisacáridos de almacenamiento tales como almidón , glucógeno y galactógeno y polisacáridos estructurales tales como celulosa y quitina .

Los polisacáridos son a menudo bastante heterogéneos y contienen ligeras modificaciones de la unidad repetitiva. Dependiendo de la estructura, estas macromoléculas pueden tener propiedades distintas de sus bloques de construcción de monosacáridos. Pueden ser amorfos o incluso insolubles en agua. Cuando todos los monosacáridos en un polisacárido son del mismo tipo, el polisacárido se llama homopolisacárido u homoglicano , pero cuando está presente más de un tipo de monosacárido, se denominan heteropolisacáridos o heteroglicanos .

Los sacáridos naturales se componen generalmente de carbohidratos simples llamados monosacáridos con fórmula general (CH 2 O) n donde n es tres o más. Ejemplos de monosacáridos son glucosa , fructosa y gliceraldehído . Mientras tanto, los polisacáridos tienen una fórmula general de C x (H 2 O) y donde x suele ser un número grande entre 200 y 2500. Cuando las unidades repetidas en la cadena principal del polímero son monosacáridos de seis carbonos , como suele ser el caso, el la fórmula general se simplifica a (C 6 H 10 O 5 ) n , donde típicamente 40 ≤ n ≤ 3000 .

Como regla general, los polisacáridos contienen más de diez unidades de monosacáridos, mientras que los oligosacáridos contienen de tres a diez unidades de monosacáridos; pero el límite preciso varía un poco según la convención. Los polisacáridos son una clase importante de polímeros biológicos . Su función en los organismos vivos suele estar relacionada con la estructura o el almacenamiento. El almidón (un polímero de glucosa) se utiliza como polisacárido de almacenamiento en plantas, encontrándose en forma tanto de amilosa como de amilopectina ramificada . En los animales, el polímero de glucosa estructuralmente similar es el glucógeno más densamente ramificado , a veces llamado "almidón animal". Las propiedades del glucógeno permiten que se metabolice más rápidamente, lo que se adapta a la vida activa de los animales en movimiento. En las bacterias , juegan un papel importante en la multicelularidad bacteriana.

La celulosa y la quitina son ejemplos de polisacáridos estructurales. La celulosa se usa en las paredes celulares de plantas y otros organismos y se dice que es la molécula orgánica más abundante en la Tierra. Tiene muchos usos, como un papel importante en las industrias del papel y textil, y se utiliza como materia prima para la producción de rayón (mediante el proceso de viscosa ), acetato de celulosa, celuloide y nitrocelulosa. La quitina tiene una estructura similar, pero tiene ramas laterales que contienen nitrógeno , lo que aumenta su fuerza. Se encuentra en exoesqueletos de artrópodos y en las paredes celulares de algunos hongos . También tiene múltiples usos, incluidos los hilos quirúrgicos . Los polisacáridos también incluyen callosa o laminarina , crisolaminarina , xilano , arabinoxilano , manano , fucoidan y galactomanano .

Función

Estructura

Los polisacáridos nutricionales son fuentes comunes de energía. Muchos organismos pueden descomponer fácilmente los almidones en glucosa; sin embargo, la mayoría de los organismos no pueden metabolizar la celulosa u otros polisacáridos como la quitina y los arabinoxilanos . Estos tipos de carbohidratos pueden ser metabolizados por algunas bacterias y protistas. Los rumiantes y las termitas , por ejemplo, utilizan microorganismos para procesar la celulosa .

Aunque estos polisacáridos complejos no son muy digeribles, proporcionan importantes elementos dietéticos para los seres humanos. Estos carbohidratos, llamados fibra dietética , mejoran la digestión, entre otros beneficios. La acción principal de la fibra dietética es cambiar la naturaleza del contenido del tracto gastrointestinal y cambiar la forma en que se absorben otros nutrientes y sustancias químicas. La fibra soluble se une a los ácidos biliares en el intestino delgado, lo que hace que sea menos probable que ingresen al cuerpo; esto, a su vez, reduce los niveles de colesterol en sangre. La fibra soluble también atenúa la absorción de azúcar, reduce la respuesta del azúcar después de comer, normaliza los niveles de lípidos en sangre y, una vez fermentada en el colon, produce ácidos grasos de cadena corta como subproductos con una amplia gama de actividades fisiológicas (discusión a continuación). Aunque la fibra insoluble se asocia con un riesgo reducido de diabetes, se desconoce el mecanismo por el cual esto ocurre.

Aún no propuesto formalmente como un macronutriente esencial (a partir de 2005), la fibra dietética se considera importante para la dieta, y las autoridades reguladoras de muchos países desarrollados recomiendan aumentos en la ingesta de fibra.

Polisacáridos de almacenamiento

Almidón

El almidón es un polímero de glucosa en el que las unidades de glucopiranosa están unidas por enlaces alfa . Está compuesto por una mezcla de amilosa (15-20%) y amilopectina (80-85%). La amilosa consiste en una cadena lineal de varios cientos de moléculas de glucosa y la amilopectina es una molécula ramificada compuesta por varios miles de unidades de glucosa (cada cadena de 24 a 30 unidades de glucosa es una unidad de amilopectina). Los almidones son insolubles en agua . Se pueden digerir rompiendo los enlaces alfa (enlaces glicosídicos). Tanto los humanos como otros animales tienen amilasas, por lo que pueden digerir los almidones. La papa , el arroz , el trigo y el maíz son las principales fuentes de almidón en la dieta humana. Las formaciones de almidones son las formas en que las plantas almacenan glucosa .

Glucógeno

El glucógeno sirve como almacenamiento de energía secundaria a largo plazo en células animales y fúngicas , y las reservas de energía primaria se mantienen en el tejido adiposo . El glucógeno es producido principalmente por el hígado y los músculos , pero también puede producirse por glucogénesis dentro del cerebro y el estómago .

El glucógeno es análogo al almidón , un polímero de glucosa en las plantas , y a veces se lo denomina almidón animal , que tiene una estructura similar a la amilopectina pero más ramificado y compacto que el almidón. El glucógeno es un polímero de enlaces glicosídicos α (1 → 4) unidos, con ramas unidas α (1 → 6). El glucógeno se encuentra en forma de gránulos en el citosol / citoplasma de muchos tipos de células y desempeña un papel importante en el ciclo de la glucosa . El glucógeno forma una reserva de energía que se puede movilizar rápidamente para satisfacer una necesidad repentina de glucosa, pero que es menos compacta y está disponible de forma más inmediata como reserva de energía que los triglicéridos (lípidos).

En los hepatocitos del hígado , el glucógeno puede constituir hasta el 8 por ciento (100 a 120 gramos en un adulto) del peso fresco poco después de una comida. Solo el glucógeno almacenado en el hígado puede hacerse accesible a otros órganos. En los músculos , el glucógeno se encuentra en una concentración baja del uno al dos por ciento de la masa muscular. La cantidad de glucógeno almacenado en el cuerpo, especialmente en los músculos , el hígado y los glóbulos rojos, varía con la actividad física, la tasa metabólica basal y los hábitos alimenticios, como el ayuno intermitente . Se encuentran pequeñas cantidades de glucógeno en los riñones y cantidades aún más pequeñas en ciertas células gliales del cerebro y los glóbulos blancos . El útero también almacena glucógeno durante el embarazo para nutrir al embrión.

El glucógeno está compuesto por una cadena ramificada de residuos de glucosa. Se almacena en el hígado y los músculos.

  • Es una reserva de energía para los animales.
  • Es la principal forma de carbohidrato almacenada en el cuerpo animal.
  • Es insoluble en agua. Se vuelve marrón rojizo cuando se mezcla con yodo.
  • También produce glucosa por hidrólisis .

Galactógeno

El galactógeno es un polisacárido de la galactosa que funciona como almacenamiento de energía en caracoles pulmonados y algunos Caenogastropoda . Este polisacárido es exclusivo de la reproducción y solo se encuentra en la glándula de la albúmina del sistema reproductor del caracol hembra y en el líquido perivitelino de los huevos.

El galactógeno sirve como reserva de energía para el desarrollo de embriones y crías, que luego es reemplazado por glucógeno en juveniles y adultos.

Inulina

La inulina es un carbohidrato complejo de polisacárido natural compuesto de fibra dietética , un alimento derivado de plantas que no puede ser degradado por completo por las enzimas digestivas humanas.

Polisacáridos estructurales

Algunos polisacáridos estructurales naturales importantes

Arabinoxilanos

Los arabinoxilanos se encuentran en las paredes celulares primarias y secundarias de las plantas y son los copolímeros de dos azúcares: arabinosa y xilosa . También pueden tener efectos beneficiosos sobre la salud humana.

Celulosa

Los componentes estructurales de las plantas se forman principalmente a partir de celulosa . La madera es principalmente celulosa y lignina , mientras que el papel y el algodón son celulosa casi pura. La celulosa es un polímero elaborado con unidades de glucosa repetidas unidas por enlaces beta . Los seres humanos y muchos animales carecen de una enzima para romper los enlaces beta , por lo que no digieren la celulosa. Ciertos animales, como las termitas, pueden digerir la celulosa porque las bacterias que poseen la enzima están presentes en su intestino. La celulosa es insoluble en agua. No cambia de color cuando se mezcla con yodo. Por hidrólisis, produce glucosa. Es el carbohidrato más abundante de la naturaleza.

Quitina

La quitina es uno de los muchos polímeros naturales . Forma un componente estructural de muchos animales, como los exoesqueletos . Con el tiempo es biodegradable en el medio natural. Su descomposición puede ser catalizada por enzimas llamadas quitinasas , secretadas por microorganismos como bacterias y hongos y producidas por algunas plantas. Algunos de estos microorganismos tienen receptores de azúcares simples provenientes de la descomposición de la quitina. Si se detecta quitina, producen enzimas para digerirla escindiendo los enlaces glicosídicos para convertirla en azúcares simples y amoníaco .

Químicamente, la quitina está estrechamente relacionada con el quitosano (un derivado de la quitina más soluble en agua). También está estrechamente relacionada con la celulosa porque es una cadena larga no ramificada de derivados de la glucosa . Ambos materiales aportan estructura y resistencia, protegiendo al organismo.

Pectinas

Las pectinas son una familia de polisacáridos complejos que contienen residuos de ácido α- D- galactosilurónico unidos en 1,4 . Están presentes en la mayoría de las paredes celulares primarias y en las partes no leñosas de las plantas terrestres.

Polisacáridos ácidos

Los polisacáridos ácidos son polisacáridos que contienen grupos carboxilo , grupos fosfato y / o grupos éster sulfúrico .

Polisacáridos bacterianos

Las bacterias patógenas suelen producir una capa espesa de polisacárido similar a una mucosa. Esta "cápsula" cubre las proteínas antigénicas de la superficie bacteriana que, de otro modo, provocarían una respuesta inmunitaria y, por lo tanto, conducirían a la destrucción de las bacterias. Los polisacáridos capsulares son solubles en agua, comúnmente ácidos y tienen pesos moleculares del orden de 100.000 a 2.000.000 daltons . Son lineales y constan de subunidades que se repiten regularmente de uno a seis monosacáridos . Existe una enorme diversidad estructural; Casi doscientos polisacáridos diferentes son producidos por E. coli solo. Como vacunas se utilizan mezclas de polisacáridos capsulares, ya sean conjugados o nativos .

Las bacterias y muchos otros microbios, incluidos los hongos y las algas , a menudo secretan polisacáridos para ayudarlos a adherirse a las superficies y evitar que se sequen. Los seres humanos han desarrollado algunos de estos polisacáridos en productos útiles, como la goma xantana , el dextrano , la goma welan , la goma gellan , la goma diutan y el pululano . Se informó que el exopolisacárido de tipo Levan producido por Pantoea agglomerans ZMR7 disminuye la viabilidad de las células de rabdomiosarcoma (RD) y cáncer de mama (MDA) en comparación con las células cancerosas no tratadas. Además, tiene una alta actividad antiparasitaria frente al promastigote de Leishmania tropica.

La mayoría de estos polisacáridos exhiben propiedades viscoelásticas útiles cuando se disuelven en agua a niveles muy bajos. Esto hace que varios líquidos que se usan en la vida cotidiana, como algunos alimentos, lociones, limpiadores y pinturas, sean viscosos cuando están estacionarios, pero fluyen mucho más libremente cuando se aplica incluso una ligera cizalla agitando o agitando, vertiendo, limpiando o cepillando. Esta propiedad se denomina pseudoplasticidad o adelgazamiento por cizallamiento ; el estudio de tales materias se llama reología .

Viscosidad de la goma Welan
Tasa de cizallamiento (rpm) Viscosidad ( cP o mPa⋅s)
0,3 23330
0,5 16000
1 11000
2 5500
4 3250
5 2900
10 1700
20 900
50 520
100 310

Las soluciones acuosas del polisacárido solo tienen un comportamiento curioso cuando se agitan: después de que cesa la agitación, la solución inicialmente continúa girando debido al impulso, luego se ralentiza hasta detenerse debido a la viscosidad e invierte la dirección brevemente antes de detenerse. Este retroceso se debe al efecto elástico de las cadenas de polisacáridos, previamente estiradas en solución, volviendo a su estado relajado.

Los polisacáridos de la superficie celular desempeñan diversas funciones en la ecología y fisiología bacteriana . Sirven como una barrera entre la pared celular y el medio ambiente, median las interacciones huésped-patógeno. Los polisacáridos también juegan un papel importante en la formación de biopelículas y la estructuración de formas de vida complejas en bacterias como Myxococcus xanthus .

Estos polisacáridos se sintetizan a partir de precursores activados por nucleótidos (llamados azúcares de nucleótidos ) y, en la mayoría de los casos, todas las enzimas necesarias para la biosíntesis, ensamblaje y transporte del polímero completo están codificadas por genes organizados en grupos específicos dentro del genoma del organismo . El lipopolisacárido es uno de los polisacáridos de la superficie celular más importantes, ya que desempeña un papel estructural clave en la integridad de la membrana externa, además de ser un mediador importante de las interacciones huésped-patógeno.

Se han identificado las enzimas que forman los antígenos O de la banda A (homopolimérico) y de la banda B (heteropolimérico) y se han definido las vías metabólicas . El alginato exopolisacárido es un copolímero lineal de residuos de ácido D- manurónico y ácido L- gulurónico ligados a β-1,4 , y es responsable del fenotipo mucoide de la enfermedad de fibrosis quística en etapa tardía. Los loci pel y psl son dos grupos de genes recientemente descubiertos que también codifican exopolisacáridos que se considera importantes para la formación de biopelículas. El ramnolípido es un biosurfactante cuya producción está estrictamente regulada a nivel transcripcional , pero en la actualidad no se comprende bien el papel preciso que desempeña en la enfermedad. La glicosilación de proteínas , en particular de pilina y flagelina , se convirtió en un foco de investigación de varios grupos desde aproximadamente 2007, y se ha demostrado que es importante para la adhesión e invasión durante la infección bacteriana.

Ensayos de identificación química de polisacáridos

Tinción de ácido periódico-Schiff (PAS)

Los polisacáridos con dioles vecinales no protegidos o aminoazúcares (donde algunos grupos hidroxilo se reemplazan con aminas ) dan una tinción de ácido periódico-Schiff positiva (PAS). La lista de polisacáridos que se tiñen con PAS es larga. Aunque las mucinas de origen epitelial se tiñen con PAS, las mucinas de origen del tejido conectivo tienen tantas sustituciones ácidas que no les quedan suficientes grupos glicol o aminoalcohol para reaccionar con PAS.

Ver también

Referencias

enlaces externos